Fabulosa time-lapse de una explosión estelar, tomada por el Hubble

Extraído de http://www.iflscience.com/space/outstanding-time-lapse-stellar-explosion-hubble

In January 2002, astronomers discovered a massive explosion coming from V838 Monocerotis. They initially thought they were witnessing a supernova, but after the initial flash of light began to dim (as expected), it began to brighten again in infrared wavelengths at the beginning of March. After that brightening faded, another one happened in April. While astronomers were certain they weren’t witnessing a supernova, they weren’t quite sure what it actually was.

Now the Hubble team have released an absolutely extraordinary time-lapse video of the event. Check it out here, and make sure you go full screen.

Nothing like this has ever been observed before, making it hard to rule out many of the possible explanations. There are five hypotheses put forward in the literature about what is causing the event, and they really don’t have much in common.

Some scientists believe V838 Monocerotis was a supernova, just a fairly unique one. This idea doesn’t have much support, since the stars in that area are too young and too massive to have caused this type of event. Another unlikely explanation is that a dying star’s core exploded into a helium flash, like what happened in Sakurai’s Object. Again, this star is too young for a thermal pulse to be the most likely scenario.

Another model proposes the helium flash, but as a thermonuclear event in which a massive star would have been able to survive. While this does fit within the necessary age of the star, the star’s mass might not support this idea.

In planetary capture events, stars begin to consume planets in their system. For a very large planet, getting pulled apart would increase friction between the solar atmosphere and the planet. There could be enough energy generated to spark deuterium fusion, which releases large amounts of energy, such as was seen in the explosion. These types of events are predicted to be about five times more common for stars like V838 Monocerotis than for stars like our Sun.

Another possible explanation is an event known as a mergeburst, in which two main sequence stars collide. This hypothesis is supported by computer modeling, and the youth of the star systems in that region could provide the unstable orbits required for stars to merge in that fashion.

Read more at http://www.iflscience.com/space/outstanding-time-lapse-stellar-explosion-hubble#vdjVAPgzOZQ3rFiB.99

http://www.slate.com/blogs/bad_astronomy/2014/06/12/v838_mon_video_of_a_stellar_outburst.html

Teoría del caos y disparos con un balón de fútbol

La teoría del caos y los disparos con efecto de un balón de fútbol

Escrito por Francisco Román Villatoro. Publicado: 30 de mayo de 2013

Extraído de http://francis.naukas.com/2013/05/30/la-teoria-del-caos-y-los-disparos-con-efecto-de-un-balon-de-futbol/

Dibujo20130530 Two examples 3D flight using shooting machine display stroboscopic images

Mucha gente cree que el efecto Magnus explica el comportamiento errático del balón de fútbol en los disparos a puerta. Sin embargo, el efecto Magnus no explica por qué Jabulani, el balón oficial en la Copa Mundial de Fútbol de 2010, se movía a veces de forma impredecible, o por qué balones con diferentes costuras se comportan de forma diferente. Taketo Mizota (Instituto Técnico de Fukuoka, Japón) y sus colegas han usado un túnel de viento y una máquina de disparo de balones con rotación para descubrir que el efecto Magnus explica el comportamiento del balón sólo para flujo con número de Reynolds (Re) subcrítico, pero el comportamiento errático del balón aparece para Re supercrítico. En dicho caso, los vórtices que aparecen en la estela del balón interaccionan de forma no lineal entre sí, haciendo que el comportamiento del balón sea caótico e impredecible, para disfrute de algunos espectadores y desazón de los porteros. El efecto mariposa, que pequeños cambios producen grandes consecuencias, es en última instancia el responsable del comportamiento errático del esférico. El artículo técnico es Taketo Mizota et al., “The strange flight behaviour of slowly spinning soccer balls,” Scientific Reports 3: 1871, 22 May 2013. doi:

 

Dibujo20130530 stroboscopic image 65 m free-fall experiment

Esta figura muestra una imagen estroboscópica de un experimento de caída libre desde 65 metros de altura de un balón con una velocidad de giro de unos 1/16 rps (revoluciones por segundo) y con viento en calma. Se observa un extraño desplazamiento del balón durante la caída libre, con un desplazamiento máximo respecto a la vertical de 75 cm y una torsión de la trayectoria con un periodo de 4,3 segundos; la velocidad máxima del balón fue de 22,5 m/s. El uso del efecto Magnus con coeficientes aerodinámicos (medidos en túneles de viento) cuyo valor varía con el número de Reynolds no es suficiente para explicar este comportamiento.

Dibujo20130530 adidas vs mizuno soccer balls

Además, los experimentos del experimento varían en función del tipo de balón utilizado (se han comparado uno de Adidas y otro de Mizuno), aunque sus coeficientes aerodinámicos medidos en el túnel de viento son muy similares.

Dibujo20130530 drag coefficients of soccer balls and spheres with smooth surfaces

Para tratar de clarificar la cuestión, se midieron con dinamómetros las fuerzas aerodinámicas sobre el balón (en reposo dentro de un túnel de viento) para flujo con número de Reynolds subcrítico y supercrítico. En este último caso los experimentos muestran un comportamiento errático, casi azaroso.

Dibujo20130530 Unsteady aerodynamic forces CL  red line and Cs blue line on the Adidas ball during a 10 s period

Las costuras del balón de fútbol juegan un papel fundamental en la transición entre flujo laminar (Re subcrítico) y flujo turbulento (Re supercrítico). En este último caso, la visualización del flujo mediante humo muestra un complejo sistema de vórtices en interacción mutua. La teoría del Dr. Taneda (1976) indica que para flujo supercrítico, en la parte trasera del balón se forma un flujo en forma de letra Ω que se alarga en forma de letra U, como muestra la siguiente figura.

Dibujo20130530 Omega shaped and two longitudinal vortices of a smooth sphere and unsteady forces

Según Mizota y sus colegas el movimiento errático e impredecible del balón en rotación lenta es causado por la inestabilidad de los vórtices que interaccionan unas con otros alterando de forma casi aleatoria las fuerzas aerodinámicas sobre el balón. Los espectadores que observen disparos del balón con trayectorias extrañas no deben echarle la culpa ni al jugador ni al balón, sino a la teoría del caos (los vórtices de la estela que interaccionan entre sí de forma no lineal e impredicible son un claro ejemplo de dinámica caótica). Si los periodistas deportivos quieren buscar un culpable, deberán recurrir al efecto mariposa.

Balón “Jabulani”: ciencia, polémica y aerodinámica

Jabulani: la ciencia, la polémica, la aerodinámica…

Escrito por Francisco Román Villatoro. Publicado: 26 de junio de 2010

Extraído de http://francis.naukas.com/2010/06/26/jabulani-la-ciencia-la-polemica-la-aerodinamica-y-un-nuevo-balon-por-pelotas/

Kaká, el robot y los Dres. Harland y Passmore de la Universidad de Loughborough, G.B.

Rojas tendrán las orejas los ingenieros de la Universidad de Loughborough, Reino Unido, que han diseñado el balón Jabulani, oficial en la Copa Mundial de la FIFA en Sudáfrica. Todo el mundo habla mal de ellos. Son los ingenieros más odiados del mundo. No sólo lo odian los italianos y los franceses, también los brasileños, los españoles, … Los porterosson los peor parados, pero “darle efecto” es imposible para los delanteros, excepto para los alemanes que la probaron en algunos partidos de la última Bundesliga. Un balón vivo, un balón terrible, un balón imprevisible, al que los jugadores no podrán acostumbrase en unos pocos partidos. La FIFA reconoce problemas con el balón Jabulani. Ya era hora. ¿Por qué está dando problemas un balón científicamente tan perfecto? Porque los jugadores no están acostumbrados, tienen que reaprender a jugar con el nuevo balón. En el fútbol profesional algunos disparos son imposibles y requieren un “toque mágico” que el más mínimo cambio en la aerodinámica del balón impide. Además, un balón tan esférico se le resbala de las manos a los porteros. Una pena, ya que los únicos que salen perdiendo de todos estos temas son los científicos y los ingenieros, que vuelven a estar por los suelos en todas las conversaciones de café, en España y en el resto del mundo. Ya nos lo contó James Dacey, “Players attack aerodynamics of the World Cup ball,” PhysicsWorld.com, Jun 9, 2010. Porque ciertos disparos violan las leyes de la física, en el vacío, ya que requieren condiciones meteorológicas adecuadas, como también nos contó James Dacey, “Brazilian wundergoal revisited,” PhysicsWorld.com,Jun 8, 2010. La física del fútbol no tiene todas las respuestas, como nos contaron Takeshi Asal, Takao Akatsuka y Steve Haake, “The physics of football,” PhysicsWorld.com,Jun 1, 1998. Pero la física nos ayuda a entender las pésimas decisiones de las autoridades, que meten la pata excusándose en ingenieros y científicos, porque tratan de favorecer a ciertas empresas que utilizanprácticas poco ortodoxas.

Proceso de fabricación del nuevo balón (el vídeo tarda en descargar, así que tranquilidad).

Un balón perfecto, un 5% más rápido, más fiable, más predecible, diseñado gracias a los disparos de un robot automático en un túnel de viento. Un balón diseñado para reducir la resistencia aerodinámica en vuelo gracias a un menor número de costuras que permite minimizar la estela de remolinos turbulentos que cualquier ligerísima imperfección en el balón introduce. Obviamente, hay costuras, pero han sido diseñadas al milímetro. Tanto el ancho de la ranura, su profundidad y su forma han sido estudiadas para lograr el mejor disparo posible. La más alta tecnología puesta en juego para un deporte de masas.

Pero el nuevo balón no ha sido bien recibido por los jugadores, que afirman que para ellos, pobres humanos, Jabulani es menos predecible que los balones convencionales. Los jugadores tienen que reaprender su juego, descubrir todas las oportunidades que les ofrece el nuevo balón, pero hacerlo durante un mundial es una puñalada trapera de la FIFA. Los jugadores y especialmente los porteros y los delanteros son muy sensibles a cualquier cambio en la tecnología del balón. Si el balón hubiera sido introducido hace dos años en todas las ligas profesionales, ahora los mejores jugadores del mundo jugarían con el mejor balón del mundo como todos los aficionados se merecen. Este mundial promete sorpresas. Quien sabe, quizás España gane y Brasil no llegue a semifinales. La culpa la tendrá el balón. La culpa, como siempre, la tendrán los ingenieros y los científicos que lo han diseñado. No le pongas un nuevo traje al emperador… o se mofarán de él.

La mecánica y la aerodinámica de un disparo de falta ha sido

Las grandes figuras de fútbol son capaces de lanzar a puerta, a balón parado, con barrera incluida, logrando una curvatura de la trayectoria del esférico que esquiva la barrera y engaña al portero. La física del disparo es elemental, gracias al efecto Magnus. Sin embargo, la ejecución precisa del disparo requiere una maestría al alcance sólo de los jugadores de élite. Hay disparos irrepetibles y dichos disparos son una buena excusa, como cualquier otra, para estudiar la física del disparo, el efecto de la resistencia aerodinámica, el número de Reynolds y la fuerza de Magnus (debida a la rotación del balón). La física ha sido discutida muchas veces, pero durante este Mundial todos los profesores de física deberían aprovechar que el artículo de Gren Ireson (por ende de la Universidad de Loughborough), “Beckham as physicist?,” Physics Education 36: 10-13, 2001, es de acceso gratuito para todos. Sólo será gratis durante este Mundial. Al finalizar, la editorial IOP dejará de ofrecerlo gratis.

“To coincide with the 2010 World Cup, IOP Publishing has created a collection of football related articles. These papers are from a variety of IOP Publishing hosted journals and are free to read throughout the World Cup.” Listado de artículos gratis en IOP.

Entre los artículos ofrecidos gratuitamente destaca otro de la Universidad creadora de Jabulani, que presenta una técnica de reconocimiento de imágenes para la reconstrucción de la trayectoria y orientación (“rotación”) de un balón en vuelo a partir de cámaras de vídeo. El método utiliza algoritmos genéticos. Lo más difícil, obviamente, es determinar la orientación exacta del balón. Para ello los investigadores han coloreado cada hexágono y pentágono del balón de tal forma que visto el balón desde cualquier ángulo posible el patrón de colores observado sea siempre diferente y característico de dicha orientación. Es un método realmente ingenioso. Un artículo curioso que nos muestra el gran número de sutilezas técnicas que requiere el análisis de algo aparentemente tan simple como un vídeo de la trayectoria de un esférico tras ser disparado. Os recomiendo la lectura del artículo de Paul Neilson, Roy Jones, David Kerr y Chris Sumpter, “An image recognition system for the measurement of soccer ball spin characteristics,” Meas. Sci. Technol. 15: 2239-2247, 2004 [aprovechad que es gratis durante el mundial].

La aerodinámica de Brazuca

La aerodinámica de Brazuca, el balón del Mundial de fútbol

Escrito por Francis Román Villatoro. Publicado: 8 de junio de 2014

Extraído de http://francis.naukas.com/2014/06/08/francis-en-rosavientos-noticias-para-manana-3/

Emitido en la sección ¡Eureka! en el programa de radio La Rosa de los Vientos, de Onda Cero. http://www.ondacero.es/audios/la-rosa-de-los-vientos_20140608.html  (Podcast del programa)

Aparte del pulpo Paul, que adivinó la victoria de España en la final, una de las estrellas del Mundial de Fútbol 2010 en Sudáfrica fue el balón oficial, Jabulani de Adidas, muy criticado por los jugadores porque su trayectoria era difícil de prever. ¿Se sabe por qué era un balón tan difícil de controlar? El balón de fútbol más popular está formado por 32 paneles, 12 pentágonos y 20 hexágonos, unidos entre sí por 90 costuras. Su geometría es la de un icosaedro truncado, que cuando se infla tiene una forma bastante esférica, con un volumen superior al 95 % del una esfera con el mismo radio. El objetivo de diseño del balón oficial del Mundial de la FIFA de 2010 fue lograr un balón perfectamente esférico. El resultado, el balón Jabulani, tenía un volumen superior al 99% de una esfera del mismo radio y estaba formado por 8 paneles curvos unidos entre sí sin usar costuras gracias a un método térmico. Para mejorar el agarre del balón por parte de los porteros se dibujó una textura en forma de surcos en el balón. Pero en los disparos con efecto el balón se comportaba de forma diferente a un balón convencional, lo que despistó a muchos jugadores y provocó muchas críticas. Las costuras del balón son claves en su aerodinámica.

Más información en “Brazuca, el balón del Mundial de fútbol, es el más estable gracias a la ciencia,” Agencia SINC, 29 May 2014; Sungchan Hong, Takeshi Asai, “Effect of panel shape of soccer ball on its flight characteristics,” Scientific Reports 4: 5068, 29 May 2014.

 

Dibujo20140607 soccer balls used for the test and their panel orientations - srep05068-f2

El efecto aerodinámico de las costuras del balón nos hacen pensar en los pequeños hoyos que se observan en las bolas de golf. Muchos aficionados se preguntarán ¿por qué las bolas de golf tienen esos pequeños hoyos en su superficie? Hay dos tipos de bolas de golf, el modelo británico que presenta 330 alveolos en su superficie y el modelo estadounidense que usa 336 alveolos. Esta textura de la bola de golf permite alcanzar grandes distancias (de hasta 230 metros) porque reduce la resistencia aerodinámica sobre la bola. En un bola en vuelo, el flujo de aire se agarra a la bola en la parte delantera formando lo que se llama una capa límite. Esta capa límite se separa en la parte trasera de la bola formando una estela. Cuanto mayor se la región de separación, mayor será la resistencia aerodinámica. La separación ocurre antes cuando el flujo es laminar y se retrasa en el caso turbulento. La rugosidad de la superficie de la bola de golf provoca que el flujo de aire cambie de laminar a turbulento, con lo que permanece más tiempo unido a la bola y la región de separación es más pequeña. Con las costuras del balón de fútbol ocurre algo parecido, el flujo de aire se vuelve asimétrico debido a las costuras lo que ayuda mucho en los disparos con efecto. Este efecto es mucho más pequeño en un balón muy liso, como Jabulani. Los jugadores acostumbrados a jugar con un balón convencional encontraron grandes dificultades para adaptarse a un balón tan liso como Jabulani.

Dibujo20140607 Variation drag coefficient with type of ball and panel orientation - srep05068-f3

El balón oficial para el Mundial de Fútbol de 2014 en Brasil, también de Adidas, se llama Brazuca y promete ser mucho más estable que Jabulani. ¿Se han realizado estudios científicos para comprobarlo? El nuevo balón oficial, Brazuca de Adidas, tiene solamente seis paneles de poliuretano que se unen de forma térmica para lograr un gran esfericidad, como en Jabulani. Sin embargo, se ha dotado al balón de una textura similar a la de una pelota de baloncesto. Esta novedosa textura mejora mucho la aerodinámica del balón. Investigadores del Instituto de Salud y Ciencias del Deporte de la Universidad de Tsukuba, en Japón, han llevado a cabo un estudio detallado del balón Brazuca. Sungchan Hong y Takeshi Asai publican en la revista Scientific Reports una comparación empírica entre cinco balones de fútbol diferentes: Brazuca (Adidas, seis paneles), Cafusa (Adidas, 32 paneles), Jabulani (Adidas, 8 paneles), Teamgeist 2 (Adidas, 14 paneles) y un balón convencional (Vantaggio, 32 paneles).

Dibujo20140607 Photograph of the wind tunnel test setup - srep05068-f1

En el túnel de viento se usaron dos orientaciones diferentes de los paneles del balón respecto al movimiento del aire. Los resultados demuestran que la resistencia aerodinámica varía mucho con el tipo de balón y con la orientación de los paneles. El balón más estable y con mejor aerodinámica es el nuevo balón Brazuca, seguido, sorprendentemente, del balón convencional de 32 paneles; el peor balón fue Jabulani, algo que no sorprenderá a nadie, pues es demasiado liso.

Dibujo20140607 Multi-purpose Kick Robot - Sungchan Hong, University of Tsukuba JAPAN

Además de las pruebas en túnel de viento se han realizado un análisis de la trayectoria del balón en disparos realizados por un robot que chuta el balón de forma automática y repetible. Según este estudio, la textura rugosa del balón, parecida a la de los balones de baloncesto, es la clave que garantiza una alta estabilidad y un control preciso para los delanteros, y al mismo tiempo facilita el agarre por parte de los porteros.

Las grandes figuras de fútbol son capaces de lanzar a puerta, a balón parado, con barrera incluida, logrando una curvatura de la trayectoria del esférico que esquiva la barrera y engaña al portero. ¿Cómo se logra este “toque mágico” en disparos que parecen imposibes? La física explica estos disparos sorprendentes gracias al llamado efecto Magnus. El jugador golpea el balón de tal forma que lo pone a girar durante su trayectoria. Cuando la pelota rota en vuelo, como el flujo de aire se agarra al balón, a un lado del balón el aire se mueve un poco más rápido, ya que se suma la velocidad de rotación del balón, y al otro lado se mueve un poco más lento, porque hay que restar la velocidad de rotación del balón. Como resultado, a ambos lados del esférico el aire se mueve a diferente velocidad y por el llamado principio de Bernoulli, en la zona donde se mueve más rápido la presión lateral al balón es más pequeña. Esta diferencia de presión a ambos lados de la pelota crea una fuerza neta, la fuerza de Magnus, que curva la trayectoria del balón. La dirección de curvatura depende de si el balón gira en el sentido de las agujas del reloj, con lo que se curva hacia la izquierda, o en el sentido antihorario, curvándose hacia la derecha. El giro del esférico hace que el plano de su trayectoria se curve y en los disparos libres a puerta, el balón puede esquivar la barrera y alcanzar la portería. En cierto sentido los jugadores de fútbol son físicos experimentales que aprenden a controlar el efecto Magnus gracias a la práctica.